Adapting Numerical Representations of Lung Contours Using Case-Based Reasoning and Artificial Neural Networks

نویسندگان

  • Julien Henriet
  • Pierre-Emmanuel Leni
  • Rémy Laurent
  • Ana Roxin
  • Brigitte Chebel-Morello
  • Michel Salomon
  • Jad Farah
  • David Broggio
  • Didier Franck
  • Libor Makovicka
چکیده

In case of a radiological emergency situation involving accidental human exposure, a dosimetry evaluation must be established as soon as possible. In most cases, this evaluation is based on numerical representations and models of subjects. Unfortunately, personalised and realistic human representations are often unavailable for the exposed subjects. However, accuracy of treatment depends on the similarity of the phantom to the subject. The EquiVox platform (Research of Equivalent Voxel phantom) developed in this study uses Case-Based Reasoning principles to retrieve and adapt, from among a set of existing phantoms, the one to represent the subject. This paper introduces the EquiVox platform and Artificial Neural Networks developed to interpolate the subject’s 3D lung contours. The results obtained for the choice and construction of the contours are presented and discussed. Keuwords: Adaptation, Interpolation, Case-Based Reasoning, Artificial Neural Network, 3D personalised phantoms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introduction of a combination vector to optimise the interpolation of numerical phantoms

Phantoms are 3-dimensional (3D) numerical representations of the contours of organs in the human body. The quality of the dosimetric reports established when accidental overexposures to radiation occur is highly dependent on the phantom’s reliability with respect to the subject. EquiVox is a Case-Based Reasoning platform which proposes an interpolation of the 3D Lung Contours (3DLC) of subjects...

متن کامل

Simultaneous Monitoring of Multivariate-Attribute Process Mean and Variability Using Artificial Neural Networks

In some statistical process control applications, the quality of the product is characterized by thecombination of both correlated variable and attributes quality characteristics. In this paper, we propose anovel control scheme based on the combination of two multi-layer perceptron neural networks forsimultaneous monitoring of mean vector as well as the covariance matrix in multivariate-attribu...

متن کامل

Prediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh

Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...

متن کامل

Prediction of Permanent Earthquake-Induced Deformation in Earth Dams and Embankments Using Artificial Neural Networks

This research intends to develop a method based on the Artificial Neural Network (ANN) to predict permanent earthquake-induced deformation of the earth dams and embankments. For this purpose, data sets of observations from 152 published case histories on the performance of the earth dams and embankments, during the past earthquakes, was used. In order to predict earthquake-induced deformation o...

متن کامل

Pareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms

A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012